Noboru Matsumura,* Tsunao Konishi, Hirokazu Hayashi, Masanori Yasui, \dagger Fujiko Iwasaki, \dagger and Kazuhiko Mizuno
Department of Applied Chemistry, Graduate School of Engineering,
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
\dagger Department of Applied Physics and Chemistry, The University of Electro-Communication, Tokyo 182-0021, Japan Received July 13, 2001

Abstract

Macrocyclic compounds 5a-i bearing two tetraazathiapentalene frameworks were synthesized by the reaction of 10-S-3 tetraazathiapentalene derivatives 3a-f with compounds having various diisothiocyanate functions 4a-e. The reduction of the macrocyclic compounds with NaBH_{4} afforded the ring-opened macrocyclic compounds 11a-b and 11e-h by elimination of the hypervalent sulfur. The structures of these compounds were established by their spectral data and also by the X-ray crystallographic analysis of 11a. The other ring-opened macrocyclic compounds $\mathbf{1 4 a}$ and $\mathbf{1 4 e}-\mathrm{h}$ that bear four thiourea groups were synthesized by alkaline hydrolysis of $\mathbf{5 a}$ and $\mathbf{5 e}-\mathrm{h}$ in that elimination of the $\mathrm{C}=\mathrm{S}^{\mathrm{IV}}$ moiety in the tetraazathiapentalene rings occurred.

J. Heterocyclic Chem., 39, 189 (2002).

Introduction.
Since the discovery of an unusual structure of trithiapentalene [1], which is sometimes referred to as no bond resonance, the chemistry of π-hypervalent heterocyclic systems has been a subject of considerable interest. A number of π electron systems containing a 10-S-3 framework have been synthesized [2], and their structures and reactivities have also been investigated [2-3]. However, the characteristic chemical properties of the apical and equatorial bonds on the π-hypervalent atom have little been applied to organic synthesis. Previously, we have reported the synthesis and reactivities of $10-\mathrm{S}-3$ tetraazathiapentalene derivatives, namely 2,3 -disubstituted 6,7-dihydro-5H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent[$c d$]indene-1, $4(2 H, 3 H)$ dithiones [4-5]. These compounds underwent unique reactions that were attributable to the chemical nature of the hypervalent sulfur. For example, the reaction of $\mathbf{3}(\mathrm{R}=\mathrm{H})$ with NaBH_{4} gave the ring-opened compound, 1,3-bis(methylthiocarbamoyl)-perhydropyrimidine, in good yield with release of the hypervalent sulfur [6], and the reaction of $\mathbf{3}(\mathrm{R}=\mathrm{H})$ with an excess of isothiocyanates and isocyanates afforded tetraazathiapentalene derivatives having
thiocarbonyl and carbonyl groups [7], respectively. We have applied these reactions to the synthesis of macrocyclic azacrown and azathiacrown ethers [8]. We have also found that alkaline hydrolysis of 3a gives the ring-opened compound $\mathbf{1 2}$ which bears two thiourea groups by elimination of the $\mathrm{C}=\mathrm{S}^{\text {IV }}$ moiety (see Scheme 7). On these backgrounds, we planned to synthesize new macrocyclic compounds that contain thiourea functions in the ring and also are soluble in organic solvents. The anion binding abilities of thiourea derivatives are much stronger than those of urea derivatives, because of higher acidity of the former compounds [9-10]. Very recently, Umezawa et al. reported that receptors with a rigid xanthene moiety show a strong complexation ability toward dihydrogen phosphate anion through the thiourea function in the xanthene moiety [11]. Therefore, macrocyclic compounds having thiourea function are expected to serve as a receptor of inorganic anions in molecular recognition events [12]. In this paper, we report a new methodology for preparing macrocyclic compounds bearing a π-hypervalent sulfur in the ring and also the conversion of these macrocyclic compounds to compounds bearing thiourea functions by ring-opening reaction [13].

Table 1
Preparation of Tetraazathiapentalene Derivatives 3a-f [a]

entry	R	product	yield $/ \%[\mathrm{~b}]$
1	$\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	3a	66
2	$\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$	3b	66
3	$\left(\mathrm{CH}_{2}\right)_{17} \mathrm{CH}_{3}$	3c	46
4	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph}$	3d	46
5	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OPh}$	3e	80
6	9-anthrylmethyl	3f	45

[a] The reaction was carried out in THF at room temperature for 24 h under argon. [b] Isolated yields.

Results and Discussion.
Synthesis of Macrocyclic Compounds.
5-Alkyl-3,4,5,6-tetrahydropyrimidine-2-thiols 1a-f, which were prepared from 2-alkyl-1,3-diaminopropanes and carbon disulfide under acidic conditions, were converted into dianions 2a-f by treating with two equivalents of butyllithium in THF at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction of $\mathbf{2 a} \mathbf{a} \mathbf{f}$ with one equivalent of phenacyl chloride, followed by addition of three equivalents of methylisothiocyanate, gave tetraazathiapentalene derivatives 3a-f in moderate yields (Scheme 1). The yields of 3a-f are shown in Table 1. The structures of 3a-f were determined by their IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, mass spectra, and elemental analyses. The compounds were colorless solids, stable in air, and highly soluble in organic solvents.

Treatment of 3a with 1 equivalent of p-xylylenediisothiocyanate (4a) in refluxing benzene for 24 hours gave the 18 membered macrocyclic compound $\mathbf{5 a}$ in 50% yield, along with the monosubstituted tetraazathiapentalene derivative 6a in 17% yield and the disubstituted tetraazathiapentalene derivative 7a in 3\% yield (Scheme 2). This method is referred to as Method A in this paper. The reaction of 3a-c with diisothiocyanates $\mathbf{4 a} \mathbf{a}$ was carried out under similar conditions. The results are summarized in Table 2.

Table 2
Reactions of 3a-c with Diisothiocyanates 4a-b [a]

entry	compound	diisothiocyanate	$\operatorname{product}(\mathrm{yield} / \%)[\mathrm{b}]$		
	$\mathbf{3}$	$\mathbf{4}$			
1	$\mathbf{3 a}$	$\mathbf{4 a}$	$\mathbf{5 a}(50)$	$\mathbf{6 a}(17)$	$\mathbf{7 a}(3)$
$\mathbf{2}$	$\mathbf{3 b}$	$\mathbf{4 a}$	$\mathbf{5 b}(46)$	$\mathbf{6 b}(17)$	$\mathbf{7 b}(4)$
3	$\mathbf{3 c}$	$\mathbf{4 a}$	$\mathbf{5 c}(39)$	$\mathbf{6 c}(16)$	$\mathbf{7 c}(3)$
4	$\mathbf{3 a}$	$\mathbf{4 b}$	$\mathbf{5 d}(17)$	$\mathbf{6 d}(32)$	$\mathbf{7 d}(22)$

[a] The reaction was carried out under reflux in benzene for 24 h . [b] Isolated yields based on 3a-c used.

The reaction of $\mathbf{3 a} \mathbf{- c}$ with $\mathbf{4 a}$ gave the macrocyclic compounds 5a-c in moderate yields (entries 1-3), but the reaction of $\mathbf{3 a}$ with $\mathbf{4 b}$ afforded $\mathbf{5 d}$ in a low yield (entry 4). The structures of 5a-d were determined by their IR, ${ }^{1} \mathrm{H}$ NMR, FAB mass spectra, and elemental analyses. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5a in CDCl_{3} showed a singlet at $\delta 5.00$ due to benzylic protons and a singlet at $\delta 7.29$ due to phenyl protons. The FAB mass spectrum of $\mathbf{5 a}$ showed a parent peak $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ at 893.

Both of 6a and 7a changed to 5a upon refluxing in benzene for 24 hours in 77% and 91% yields, respectively (Scheme 3). These results suggest that $\mathbf{5 a}$ is derived via $\mathbf{6 a}$ and/or 7a.

Scheme 3

Table 3

entry	solvent	concen [b]	prod	yie	
		$\left(\mathrm{x} 10^{2} \mathrm{~mol} / \mathrm{dm}^{3}\right.$)	5a	6a	7 a
1	benzene	2.68	50	17	3
2	benzene	6.70	53	14	3
3	benzene	13.40	55	11	3
4	toluene	2.68	43	13	5
5	benzene/hexane [d]	10.00	77	6	1

[a] The reaction of $\mathbf{3 a}$ with $\mathbf{4 a}$ was carried out under reflux in benzene or toluene for 24 h . [b] The concentration of $\mathbf{3 a}$ and $\mathbf{4 a}$ employed in the reaction. [c] Isolated yields based on 3a used. [d] Benzene/Hexane $=3: 2$.

We then studied the concentration dependence of $\mathbf{3 a}$ and $\mathbf{4 a}$ on the formation of $\mathbf{5 a}$. The results are shown in Table 3. The change in the concentration of $\mathbf{3 a}$ did not affect the yield of 5a (entries 1-3), but the yield of 5a slightly decreased with increasing the reaction temperature (entry 4). On the other hand, when a $3: 2$ mixture of benzene and hexane was used as solvent, the yield of 5a increased markedly (entry 5).

Solubility.

In general, macrocyclic compounds bearing a π-hypervalent sulfur show a poor solubility in organic solvents. In fact, $\mathbf{5}(\mathrm{R}=\mathrm{H}$ in $\mathbf{5 a})$ is almost insoluble in any organic solvent. However, introduction of longer alkyl chains on the ring increases the solubility. Macrocyclic compounds 5a-c are slightly soluble in ethanol, ether, acetone, and ethyl acetate, but fairly soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene.

Table 4
Solubility of 5a-c and $\mathbf{5}$ in Dichloromethane [a]

Compound	R	Y	solubility $\times 10^{3}(\mathrm{~mol} / \mathrm{l})$
$\mathbf{5 a}$	$\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	2.41	
$\mathbf{5 b}$	$\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$	2.18	
$\mathbf{5 c}$	$\left(\mathrm{CH}_{2}\right)_{17} \mathrm{CH}_{3}$	0.41	
$\mathbf{5}[\mathrm{~b}]$	H		0.13

[a] The solubility was measured at $21.0-21.4^{\circ} \mathrm{C}$; [b] Compound $\mathbf{5}$ is the compound having the substituent $\mathrm{R}=\mathbf{H}$ in $\mathbf{5 a}$.

The solubility of the macrocyclic compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ decreased in the order of $\mathbf{5 b}>\mathbf{5 a}>\mathbf{5 c}>\mathbf{5}(\mathrm{R}=\mathrm{H}$ in 5a) (Table 4).

Exchange Reaction in Tetraazathiapentalene Rings of Macrocyclic Compounds.

The reaction of $\mathbf{5 a}$ with excess of methylisothiocyanate in refluxing benzene gave $\mathbf{6 a}, \mathbf{7 a}, \mathbf{3 a}$, and $\mathbf{4 a}$ in $15,4,35$, and 32% yields, respectively, accompanying with the recovery of 5a (Scheme 4).

Scheme 4
$\mathbf{5 a} \underset{\text { Benzene, reflux, } 24 \mathrm{~h}}{\mathrm{CH}_{3} \mathrm{NCS}} \mathbf{6 a}+\mathbf{7 a}+\mathbf{a} \mathbf{a}+\mathbf{4 a}$

This result indicates that the exchange reaction of the NCS moiety in the tetraazathiapentalene ring of $\mathbf{5 a}$ is occurring, and this is due to the weakness of the apical bond of the hypervalent sulfur in the tetraazathiapentalene ring. The tetraazathiapentalene derivative $\mathbf{8}$ in solid state is stable in air, but decomposes slowly in solution. In fact, the ${ }^{1} \mathrm{H}$ NMR spectrum revealed that $\mathbf{8}$ decompose in ben-

Scheme 5

zene to give the thiadiazole derivative 9 and the isoselenocyanate 10 (Scheme 5).
Furthermore, 9 undergoes a 1,3-dipolar cycloaddition with $\mathbf{1 0}$ to give $\mathbf{8}$ in good yield. These results suggest that in the reaction shown in Scheme 2, the removal of methylisothiocyanate produced during the reactions serves as a procedure for improving the yields of the macrocyclic compounds. Based on this result, compound $\mathbf{5 d}$ was quantitatively obtained by the following procedure (Method B): A mixture of 3a and 2 equivalents of trimethyleneisothiocyanate $\mathbf{4 b}$ was refluxed in benzene for 24 hours, followed by removal of benzene under reduced pressure. After addition of benzene and n-hexane to the residue, the mixture was refluxed for 2 hours. The solvent mixture was again removed under reduced pressure. These operations were repeated three times to give 5d. This method (Method B) was applied to the reaction of tetraazathiapentalene derivatives 3a, 3d, and $\mathbf{3 f}$ with a variety of diisothiocyanates. As diisothiocyanates, we used p-xylylenediisothiocyanate (4a), 9,10-bis(isothiocyanatomethyl)anthracene (4c), N, N-bis(2isothiocyanatomethyl)amine (4d), and m-xylylenediisothiocyanate (4e). The reactions of $\mathbf{3 a}, \mathbf{3 d}$, and $\mathbf{3 f}$ with $\mathbf{4 a - e}$ was carried out by both of Method A and Method B. The results are summarized in Table 5.

Table 5
The Reactions of 3a, 3d, and 3f with Diisothiocyanates 4a-e

entry	3	4	method [a]	macrocyclic compound (yield / \%) [b]
1	3a	4b	A	5d(50)
	3a	4b	B	5d(quant.)
2	3d	4a	A	5g(80)
	3d	4a	B	$\mathbf{5 g}$ (quant.)
3	3d	4e	A	5h(67)
	3d	4 e	B	$\mathbf{5 h}$ (quant.)
4	3d	4d	A	5 f (30)
	3d	4d	B	5 f (quant.)
5	3d	4c	A	5e(43)
	3d	4 c	B	5e(45)
6	3 f	4 a	A	5i(13)
	3 f	4a	B	5i(15)

[a] Mehod A: The reactions were carried out under reflux in benzene for 24 h . Method B: After the reactions were carried out under reflux in benzene for 24 h , benzene was removed. Mixed solvent of benzene-n-hexane was added to the residue and refluxed for 2 h . The solvent was then removed again under reduced pressure. These operations were repeated three times. [b] Isolated yields.

When Method B was employed, the yields of the macrocyclic compounds were remarkably improved (entries 14). However, for $\mathbf{3 f}$ and $\mathbf{4 c}$ that have bulky group, the yields of the macrocyclic compounds $\mathbf{5 i}$ and $\mathbf{5 e}$ were not improved even by employing Method B. The structures of the macrocyclic compounds 5d-i were determind by their IR, ${ }^{1} \mathrm{H}$ NMR spectra, and elemental analyses.

Reduction of Macrocyclic Compounds.

Previously, we have reported that $3(\mathrm{R}=\mathrm{H})$ is converted into the ring-opened compound, 1,3-bis(methylthiocarbamoyl)perhydropyrimidine, by elimination of the hypervalent sulfur upon treating with NaBH_{4} [6]. We applied this reaction to the ring-opening reaction of the macrocyclic compounds $\mathbf{5 a - 5 b}$, and $\mathbf{5 e}-\mathbf{h}$. For example, the reaction of $\mathbf{5 a}$ with NaBH_{4} in DMSO at room temperature for 24 hours afforded the 26 -membered macrocyclic compound 11a that contains four thiourea moieties in the ring in 66% yield. The other macrocyclic compounds $\mathbf{5 b}$ and $\mathbf{5 e}-\mathbf{h}$ reacted similarly with NaBH_{4} to give the macrocyclic compounds 11b and 11e-h in moderate yields (Scheme 6). The results are summarized in Table 6.

Table 6
Reaction of Macrocyclic Compounds 5a-b, and 5e-h with NaBH_{4} [a]

| entry | compound | macrocyclic compound
 R | $\left.\begin{array}{c}\text { product } \\ \text { (yield } / \% \text {) }\end{array}\right]$ b] |
| :---: | :---: | :---: | :---: | :---: |

[a] The reaction was carried out in DMSO at room tempareture for 24 h . [b] Isolated yields.

The structures of 11a-b and 11e-h were determined by their IR, ${ }^{1} \mathrm{H}$ NMR and MS spectra, and elemental analyses.

Scheme 6

11

5a: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} ; \mathrm{Y}=$
5b: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3} ; \mathrm{Y}=$
5e: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$
5f: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=-\mathrm{CH}_{2} \mathrm{NHCH}_{2}-$
5g: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$
5h: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$

Figure 1. ORTEP drawing of 11a [15]. 10 H atoms and solvent molecules are omitted. The molecule has a crystallographic center of symmetry at the center of the macrocycle. Symmetry code: i (1-x, -y, 2-z). Selected bond lengths (A) and angles (degrees): S1-C1=1.70(2), $\mathrm{N} 1-\mathrm{C} 1=1.36(2), \mathrm{N} 1-\mathrm{C} 14=1.43(2), \mathrm{N} 2-\mathrm{C} 1=1.38(2)$, $\mathrm{N} 2-\mathrm{C} 2=1.43(2)$, $\mathrm{N} 2-\mathrm{C} 3=1.49(2), \mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 14=124(2), \mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2=125(2)$, $\mathrm{N} 1-\mathrm{C} 1-$ $\mathrm{N} 2=117.4(14), \mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3=110(2)$.

The structure of 11a was further confirmed by an X-ray crystallographic analysis [14]. Figure 1 shows an ORTEP drawing of 11a [15]. The distance between two benzene rings was about 4.0 A.

Alkaline Hydrolysis of Macrocyclic Compounds.

We have found that treatment of $\mathbf{3 a}$ with an aqueous EtOH- KOH solution gave the ring-opened product, 1-methyl-3-\{2-[(3-methyl-thioureido)-methyl]-decyl\}-

Scheme 7 KOHaq
EtOH, reflux

thiourea 12 and 5-octyl-2-oxo-dihydro-pyrimidine-1,3dicarbothioic acid bismethylamide 13 in 28% and 37% yields, respectively [13].

We also found that treatment of $\mathbf{1 3}$ with an aqueous EtOHKOH solution under the similar conditions gave $\mathbf{1 2}$ in 69% yield (Scheme 7). These results clearly show that the conversion of 3a into $\mathbf{1 2}$ proceeds via cyclic urea intermediate such as 13. We applied this alkaline hydrolysis reaction to 5a and $\mathbf{5 e} \mathbf{e}$. For example, treatment of $\mathbf{5 a}$ with an aqueous EtOHKOH solution gave the 30 -membered macrocyclic compound 14a that has four thiourea moieties in the ring in 44% yield with elimination of the $\mathrm{C}=\mathrm{S}^{\mathrm{V}}$ function of the tetraazathiapentalene ring. The other macrocyclic compounds 5e-h reacted similarly with an aqueous $\mathrm{EtOH}-\mathrm{KOH}$ solution to give 14e-h in moderate yields (Scheme 8). The structures of 14a and 14e-h were determined by comparison of their spectrtal data with those of 11a-b and 11e-h, and elemental analyses. The results are summarized in Table 7. The conversion of $\mathbf{5 a}$ and $\mathbf{5 e}-\mathrm{h}$ into $\mathbf{1 4 a}$ and $\mathbf{1 4 e} \mathrm{e}$ is considered to proceed via carbonyl intermediate such as $\mathbf{1 3}$ shown in Scheme 7.

Scheme γ

14

14a: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} ; \mathrm{Y}=$
14e: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$
14f: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=-\mathrm{CH}_{2} \mathrm{NHCH}_{2}-$
14g: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$
14h: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph} ; \mathrm{Y}=$

Table 7
Ring-Expansion of Macrocyclic Compounds 5a and 5e-h by Use of Alkaline Hydrolysis [a]

entry	compound	macrocyclic compound		product (yield / \%) [b]
		R	Y	
1	5 a	$\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	-17	14a(44)
2	5e	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph}$		14e(44)
3	$5 f$	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph}$	$-\mathrm{CH}_{2} \mathrm{NHCH}_{2}-$	14f(83)
4	5 g	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph}$	-1,	$14 \mathrm{~g}(52)$
5	5h	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{2} \mathrm{Ph}$	1	14h(26)

[a] The reaction was carried out in aqueous $\mathrm{EtOH}-\mathrm{KOH}$ solution for 4 h . [b] Isolated yields.

Conclusions.

In summary, we synthesized successfully new tetraazathiapentalene derivatives having long alkyl-chains and a hypervalent sulfur. These hypervalent compounds were converted into macrocyclic compounds bearing two tetraazathiapentalene rings by utilizing the chemical nature of apical and equatorial bonds of the hypervalent sulfur. The reduction with NaBH_{4} of the macrocyclic compounds having tetraazathiapentalene rings gave ringopened rigid macrocyclic compounds bearing thiourea function by the reductive desulfurization of the hypervalent sulfur. Their structures were confirmed by their spectral data and X-ray crystallographic analysis. On the other hand, alkaline hydrolysis of the macrocyclic compounds having the hypervalent sulfur afforded flexible macrocyclic compounds containing four thiourea
moieties by release of the $\mathrm{C}=\mathrm{S}^{\text {IV }}$ function. These macrocyclic compounds are supposed to have potential as an anion receptor in the host-guest chemistry. The methodology reported in this paper would provide a useful tool for the synthesis of macrocyclic compounds containing thiourea function.

EXPERIMENTAL

All the solvents used in this study were purified by usual procedures. TLC was performed on a Merck Art 25 DC-plastikfolien Kieselgel $60 \mathrm{~F}_{254}$. Column chromatography was performed on silica gel (Merck, 70-230 mesh). NMR spectra were obtained with a Varian Murcury 300 NMR spectrometer. Chemical shifts are expressed in ppm with TMS as an internal standard. Melting points were determined with a Yanaco MP-500 and are uncorrected. Infrared spectra were recorded by a Jasco Herschel FT IR 230 or a PERKIN ERMER 1600. UV spectra were taken with a SHIMADU UV-160A. MS spectra were obtained on a JEOL-DX 303HF. Elemental analysis were done on a YANAGIMOTO CHN corder MT-3.

Materials.
p-Xylylenediisothiocianate (4a), m-xylylenediisothiocianate (4e), 2-octyldiethylmalonate, 2-dodecyldiethyl malonate, 2-octadecyldiethyl malonate, 2-octylmalone diamide, 2-dodecylmalonediamide, and 2-octadecylmalone diamide were prepared according to the procedures described in literatures [16-17].

Preparation of 5-Alkyl-3,4,5,6-tetrahydroprimidine-2-thiols 1a-f.
5-Alkyl-3,4,5,6-tetrahydropyrimidine-2-thiols 1a-f were prepared in a similar manner to that reported in literature [18-19]. They were prepared according to the following procedure: 1) Alkylation of dimethyl malonate, 2) conversion of dimethylmalonates to amides, 3) reduction of amides to amines, and 4) cyclization of diamines by use of CS_{2}.

Scheme 9

15

9

2-(4-Benzyloxybutyl)dimethyl malonate.

A solution of 4-bromobutyl benzyl ether ($243 \mathrm{mg}, 1 \mathrm{mmol}$) in DMF (8 mL) was added to a mixture of dimethyl malonate (132 $\mathrm{mg}, 1 \mathrm{mmol})$ and $\left.\mathrm{K}_{2} \mathrm{CO}_{3} 276 \mathrm{mg}, 2 \mathrm{mmol}\right)$ in DMF (7 mL) at room temperature under argon. The mixture was stirred at the same temperature for 24 hours, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene-AcOEt (9:1 v/v). 2-(4-Benzyloxybutyl)dimethylmalonate was obtained in 82% yield (242 mg) as an oil, bp $110 \% 5 \mathrm{mmHg}$; ir (potassium bromide): $3036,2960,2859,1735,1448,1360,1249,1153,1031$, 817 , and $743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ 137-1.44 (m, 2H), 1.61-1.67 (m, 2H), $1.92(\mathrm{q}, 2 \mathrm{H}), 3.36(\mathrm{t}, 1 \mathrm{H})$, $3.46(\mathrm{t}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 65.29; $\mathrm{H}, 7.53$. Found: C, 65.20; H, 7.57.

2-(4-Benzyloxybutyl)malone diamide.

A catalytic amount (500 mg) of Na was added to an NH_{3} saturated cooled methanol, and 2-(4-benzyloxybutyl)dimethylmalonate ($331 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added to this mixture. The mixture was stirred at room temperature for 3 days. The precipitates were isolated by filtration, washed with methanol, and dried in vacuo. 2-(4-Benzyloxybutyl)malone diamide was obtained in 98% yield (302 mg) as colorless solid, $\mathrm{mp} 183-184^{\circ}$ (decomp); ir (potassium bromide): 3377, 3297, 3198, 2944, 2855, 1671, 1498, $1475,1458,1451,1382,1278,1250,1114$, and $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , dimethylsulfoxide- d_{6}): $\delta 1.23-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.39(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{br}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 7 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.62; $\mathrm{H}, 7.63$; $\mathrm{N}, 10.60$. Found: C, 63.90; H, 7.72; N, 10.30.

2-(4-Benzyloxybutyl)-1,3-diaminopropane.

A mixture of 2-(4-benzyloxybutyl)malone diamide ($2.0 \mathrm{~g}, 9.3$ mmol) and $\mathrm{BH}_{3}-\mathrm{THF}$ complex ($46.7 \mathrm{~mL}, 46.7 \mathrm{mmol}$) in THF (50 mL) was refluxed under argon for 3 hours, cooled to room temperature, and then $6 \mathrm{M} \mathrm{HCl}(7 \mathrm{~mL})$ was added to the mixture. The THF solution was evaporated, and the residue was extracted under an alkaline condition $(\mathrm{pH}=11)$ with diethyl ether. The ether extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under
reduced pressure. The crude product of 2-(4-benzyloxybutyl)-1,3diaminopropane was used for the next step without purification.

5-(4-Benzyloxybutyl)-3,4,5,6-tetrahydropyrimidine-2-thiol (1d).
Half of an ethanol solution containing $\mathrm{CS}_{2}(1.142 \mathrm{~g}, 15 \mathrm{mmol})$ was added to a solution of crude 2-(4-benzyloxybutyl)-1,3diaminopropane in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ under ice-cooling. The mixture was warmed to $60^{\circ} \mathrm{C}$, and then the other half of the CS_{2} ethanol solution was added at the same temperature. The reaction mixture was refluxed for 5 hours, concentrated HCl solution (1 mL) was added, and then further refluxed for 18 hours. The solvent was removed and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The product was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}(9: 1 \mathrm{v} / \mathrm{v})$. Compound 1 d was obtaind in 58% yield (1.264 g) as colorless solid, mp 128$130^{\circ}$; ir (potassium bromide): $3229,2930,2857,1553,1497,1454$, 1366, 1203, 1116, and $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.17-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{q}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{br}$ $\mathrm{t}, 2 \mathrm{H}), 3.26(\mathrm{br} \mathrm{d}, 2 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 6.94$ (br, 2H), 7.26-7.29 (m, 5H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 64.71 ; \mathrm{H}, 7.96 ; \mathrm{N}, 10.06$. Found: C, 64.47; H, 8.22; N, 9.76.

2-(4-Phenoxybutyl)dimethyl malonate.

2-(4-Phenoxybutyl)dimethylmalonate was obtained in 70\% yield (2.273 g) from 4-bromophenyl butyl ether and dimethylmalonate,: bp $240^{\circ} / 12 \mathrm{mmHg}$; ir (potassium bromide): 2953 , $2869,1734,1559,1542,1497,1436,1244,1033,884$, and 693 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.47(\mathrm{~m}, 2 \mathrm{H}$), $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{t}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.95(\mathrm{t}$, $2 \mathrm{H}), 6.88(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$: C, $66.67 ; \mathrm{H}, 3.73$. Found: C, 66.37; H, 3.83.

2-(9-Anthrylmethyl)dimethyl malonate.

2-(9-Anthrylmethyl)dimethyl malonate was obtained in 40% yield (4.807 g) from 9-bromomethylanthracene and dimethymalonate, mp 128-130 ${ }^{\circ}$; ir (potassium bromide): 2152, 2909, 1734, 1654, 1560, 1437, 1284, 754, and $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300$ MHz , deuteriochloroform): $\delta 3.59(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 3.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.58(\mathrm{~m}, 5 \mathrm{H}), 8.31(\mathrm{~m}, 2 \mathrm{H}), 8.65$ (m, 2H).

2-(4-Phenoxybutyl)malone diamide.

2-(4-Phenoxybutyl)malone diamide was obtained in 92% yield (3.299g) from2-(4-phenoxybutyl)dimethylmalonate and NH_{3}, $\mathrm{mp} 230^{\circ}$ (decomp); ir (potassium bromide): 3368, 3191, 2938, $2858,1670,1468,1382,1246,1177,1035,893$, and $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}\right.$, dimethylsulfoxide- $\left.\mathrm{d}_{6}\right): \delta 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{m}, 4 \mathrm{H}), 2.98(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 6.90(\mathrm{~m}$, $5 \mathrm{H}), 7.03(\mathrm{br}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 62.38; $\mathrm{H}, 7.25 ; \mathrm{N}, 11.24$. Found: C, 62.31; H, 7.25; N, 11.22.

2-(9-Anthrylmethyl)malone diamide.
2-(9-Anthrylmethyl)malone diamide was obtained in 87% yield (3.801 g) from 2-(9-anthrylmethyl)dimethylmalonate and $\mathrm{NH}_{3}, \mathrm{mp} 247^{\circ}$ (decomp); ir (potassium bromide): 3385, 3186, 2909, 2849, 1718, 1684, 1637, 901, 750, and $686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , dimethylsulfoxide- d_{6}): $\delta 4.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$), $7.14(\mathrm{br}, 2 \mathrm{H}), 7.24(\mathrm{br}, 2 \mathrm{H}), 7.67(\mathrm{~m}, 5 \mathrm{H}), 8.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $10.7 \mathrm{~Hz}), 8.50(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}) ;$ FAB mass $\mathrm{m} / \mathrm{e} 292\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

5-Octyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1a).

5-Octyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1a) was obtained in 70% yield (1.489 g) from 2-octyl-1,3-diaminopropane and $\mathrm{CS}_{2}(1.421 \mathrm{~g}, 18 \mathrm{mmol})$ under an acidic condition, mp 139-140 ${ }^{\circ}$; ir (potassium bromide): 3210, 3100, 2973, 2950, 2922, 2852, 1574, 1557, 1466, 1392, 1352, 1295, 1276, 1215, 722,637 , and $619 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max 252$ (loge 4.22) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7$ $\mathrm{Hz}), 1.27-1.31(\mathrm{~m}, 14 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}$ and 10.4 Hz$), 3.31-3.39(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{br}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 63.10 ; \mathrm{H}, 10.59 ; \mathrm{N}, 12.27$. Found: C, 63.02; H, 10.47; N, 12.00.
5-Dodecyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1b).
5-Dodecyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1b) was obtained in 72% yield $(3.062 \mathrm{~g})$, mp $137-138^{\circ}$; ir (potassium bromide): 3205, 3100, 2976, 2962, 2951, 2921, 2850, 1574, $1557,1466,1391,1289,1271,1218,721,638$, and $620 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max 252(\log \varepsilon 4.26) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.26-1.31(\mathrm{~m}, 22 \mathrm{H}), 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}$ and 10.4 Hz$), 3.31-3.39(\mathrm{~m}$, 2H), 6.61 (br, 2H).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 67.55 ; \mathrm{H}, 11.34 ; \mathrm{N}, 9.85$. Found: C, 67.59; H, 11.61; N, 9.73.

5-Octadecyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1c).

5-Octadecyl-3,4,5,6-tetrahydropyrimidine-2-thiol (1c) was obtained in 13% yield (1.623 g) from 2-octadecyl-1,3-diaminopropane and CS_{2}, mp 132-133 ${ }^{\circ}$; ir (potassium bromide): 3202, 3102, 2951, 2919, 2850, 1576, 1557, 1472, 1352, 1286, 1273, 1218, 721, and $637 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 254(\log \varepsilon 4.19) \mathrm{nm}$; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 1.25-1.31(\mathrm{~m}, 34 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ 12.2 Hz and 10.4 Hz$), 3.32-3.39(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{br}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 71.67 ; \mathrm{H}, 12.03 ; \mathrm{N}, 7.60$. Found: C, 71.92; H, 11.84; N, 7.47.
5-(4-Phenoxybutyl)-3,4,5,6-tetrahydropyrimidine-2-thiol (1e).
5-(4-Phenoxybutyl)-3,4,5,6-tetrahydropyrimidine-2-thiol (1e) was obtained in 27% yield (962 mg) from 2-(4-phenoxybutyl)-1,3diaminopropane and $\mathrm{CS}_{2}, \mathrm{mp} 168-169^{\circ}$; ir (potassium bromide):
$3278,2928,2855,1560,1271,1202,1114,985,750$, and $698 \mathrm{~cm}^{-}$
${ }^{1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{br} \mathrm{t}, 2 \mathrm{H}), 3.40(\mathrm{br} \mathrm{d}$, $2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{br}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$: C, 63.60; $\mathrm{H}, 7.62 ; \mathrm{N}, 10.59$. Found: C, 63.72; H, 7.59; N, 10.60.

5-(9-Anthrylmethyl)-3,4,5,6-tetrahydropyrimidine-2-thiol (1f).
5-(9-Anthrylmethyl)-3,4,5,6-tetrahydropyrimidine-2-thiol (1f) was obtained in 8% yield (192 mg) from 2-(9-anthrylmethyl)-1,3-diaminopropane and $\mathrm{CS}_{2}, \mathrm{mp} 275-277^{\circ}$ (decomp); ir (potassium bromide): $3188,3091,2875,2857,1576,1559,1490,1458$, $1439,1377,1324,1301,1217,1028,900,751$, and $684 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 402$ (log $\left.\varepsilon 3.88\right), 380(\log \varepsilon 3.90), 361(\log \varepsilon 3.68)$, 257 (loge 4.72) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $2.60(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{br} \mathrm{t}, 2 \mathrm{H}), 3.32$ (br d, 2H), 3.75 (d, 2H, J = 7.7 $\mathrm{Hz}), 6.27(\mathrm{br}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 5 \mathrm{H}), 8.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 74.35 ; \mathrm{H}, 5.91 ; \mathrm{N}, 9.29$. Found: C, 74.60; H, 5.65; N, 9.19.
2,3-Dimethyl-6-octyl-5H,7H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent $[c, d]$ indene- $1,4(2 H, 3 H)$-dithione (3a).

Typical procedure is as follows: A hexane solution of butyllithium (1.9 mmol) was added to a solution of cyclic thiourea $\mathbf{1 a}$ ($200 \mathrm{mg}, 0.88 \mathrm{mmol}$) in THF $\left(15 \mathrm{ml}\right.$) with stirring at $0^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 1 hour at the same temperature. To the resulting dianion $\mathbf{2 a}$ was added dropwise a THF solution (5 $\mathrm{ml})$ of phenacyl chloride $(135 \mathrm{mg}, 0.88 \mathrm{mmol})$. The solution immediately became wine red. The reaction mixture was refluxed for 2 hours under argon and cooled to room temperature. A solution of methylisothiocyanate ($192 \mathrm{mg}, 2.7 \mathrm{mmol}$) in THF (5 mL) was added, and the mixture was stirred at room temperature for 20 hours under argon, and then evaporated. The residue was poured into an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on a silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane ($20: 1 \mathrm{v} / \mathrm{v}$) to give 3a ($215 \mathrm{mg}, 66 \%$) as a colorless solid, mp 156-158 ${ }^{\circ}$; ir (potassium bromide): 2924, 2852, 1585, 1541, 1492, 1468, 1238, 1200, 1172, 1118, 1099, 724, and $646 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max 260(\log \varepsilon$ 4.52) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 1.28-1.55(\mathrm{~m}, 14 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 6 \mathrm{H}), 3.59(\mathrm{dd}$, $2 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}$ and 9.9 Hz$), 4.87(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}$ and 4.5 Hz$)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~S}_{3}$: C, 51.57; H, 7.57; N, 15.04. Found: C, 51.51; H, 7.73; N, 14.58.
2,3-Dimethyl-6-dodecyl-5H,7H-2a-thia(2a-S ${ }^{\text {IV }}$)-2,3,4a, 7atetraazacyclopent $[c, d]$ indene- $1,4(2 H, 3 H)$-dithione (3b).

Tetraazathiapentalene 3b was obtained in 66% yield (283 mg) by use of the $\mathbf{2 b} / \mathrm{PhCOCH}_{2} \mathrm{Cl} / \mathrm{MeNCS}$ system, mp 148-152 ${ }^{\circ}$; ir (potassium bromide): 2923, 2852, 1586, 1542, 1492, 1469, 1240, 1201, 1173, 1123, 1107, and $646 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ $263(\log \varepsilon 4.56) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.28-1.53(\mathrm{~m}, 22 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 3.23$ $(\mathrm{s}, 6 \mathrm{H}), 3.59(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}$ and 9.9 Hz$), 4.88(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ 13.9 Hz and 4.5 Hz).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{~S}_{3}$: C, 56.03; H, 8.46; N, 13.07. Found: C, 56.13; H, 8.67; N, 12.95 .

2,3-Dimethyl-6-octadecyl-5H,7H-2a-thia(2a-S ${ }^{\text {IV }}$)-2,3,4a,7atetraazacyclopent $[c, d]$ indene-1,4(2H,3H)-dithione (3c).

Tetraazathiapentalene 3c was obtained in 46% yield (238 mg) by use of the
$\mathbf{2 c} / \mathrm{PhCOCH}_{2} \mathrm{Cl} / \mathrm{MeNCS}$ system, mp $148-152^{\circ}$; ir (potassium bromide): 2921, 2851, 1586, 1541, 1490, 1238, 1201, 1172, 1111, 1094, and $646 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 264$ (loge 4.58$) \mathrm{nm} ;{ }^{1} \mathrm{H}$ nmr (300 MHz , deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$), $1.26-1.53(\mathrm{~m}, 34 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{dd}, 2 \mathrm{H})$, 4.88 (dd, 2H).

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{~S}_{3}$: C, 60.89 ; H, 9.43; N, 10.92. Found: C, 61.09; H, 9.12; N, 10.68 .

2,3-Dimethyl-6-(4-benzyloxybutane)-5H,7H-2a-thia(2a-S ${ }^{\text {IV }}$)2,3,4a, 7a-tetraazacyclopent $[c d]$ indene-1,4(2H,3H)-dithione (3d).

Tetraazathiapentalene $\mathbf{3 d}$ was obtained in 46% yield (196 mg) by use of the $\mathbf{2 d} / \mathrm{PhCOCH}_{2} \mathrm{Cl} / \mathrm{MeNCS}$ system, $\mathrm{mp} 101-103^{\circ}$; ir (potassium bromide): 2921, 2849, 1578, 1541, 1490, 1458, 1388, 1239 , $1200,1113,750,693$, and $675 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 263$ (log ε $4.90) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.55(\mathrm{~m}, 6 \mathrm{H})$, $2.22(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 3.58(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $13.1 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=13.1 \mathrm{~Hz}), 7.36(\mathrm{~m}, 5 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}_{3}$: C, 54.04; H, 6.21; N, 13.27. Found: C, 54.21; H, 6.19; N, 13.53.
2,3-Dimethyl-6-(4-phenoxybutane)-5H,7H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent $[c d]$ indene-1,4($2 H, 3 H$)-dithione ($\mathbf{3 e}$).

Tetraazathiapentalene $\mathbf{3 e}$ was obtained in 80% yield (322 mg) by use of the $2 \mathrm{e} / \mathrm{PhCOCH}_{2} \mathrm{Cl} / \mathrm{MeNCS}$ system, mp $165-167^{\circ}$; ir (potassium bromide): 2940, 2857, 1581, 1540, 1498, 1466, 1389, 1276, 1243, 1198, 1173, 1121, 1032, 933, 814, 754, and 689 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.67(\mathrm{~m}, 4 \mathrm{H}$), $1.85(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}$ and 3.8 Hz$), 4.00(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.89(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}$ and $9.3 \mathrm{~Hz}), 6.94(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS}_{3}$: C, 52.95; H, 5.92; N, 13.72. Found: C, 53.23; H, 6.03; N, 13.42.
2,3-Dimethyl-6-(9-anthrylmethyl)-5H,7H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent $[c d]$ indene-1,4($2 H, 3 H$)-dithione ($\mathbf{3 f}$).

Tetraazathiapentalene $\mathbf{3 f}$ was obtained in 45% yield (81 mg) by use of the $2 \mathbf{2 f} / \mathrm{PhCOCH}_{2} \mathrm{Cl} / \mathrm{MeNCS}$ system; Yellow solid, mp $145-146^{\circ}$; ir (potassium bromide): 3039, 2922, 2849, 1676, 1578, $1541,1490,1444,1401,1280,1199,1055,1011,887,756$, and $679 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 389$ (loge 4.06), 378 (log 8.88), $360(\log \varepsilon 3.96), 256(\log \varepsilon 5.11) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 3.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.0$ $\mathrm{Hz}), 3.91(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.4 \mathrm{~Hz}), 4.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}), 7.62(\mathrm{~m}$, 5 H), $8.01(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}$).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{3}$: C, 61.30; H, 4.92; N, 12.43. Found: C, 61.00; H, 5.22; N, 12.17.
Synthesis of Macrocyclic Compound (5a).

1) Method A.

A solution of $\mathbf{3 a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathbf{4 a}(220 \mathrm{mg}, 1 \mathrm{mmol})$ in benzene (10 mL) was refluxed for 24 hours, and cooled to room temperature. The precipitate was isolated by filtration, washed with n-hexane, and dried in vacuo. Compound 5a was obtained in 50% yield (224 mg) as colorless solid. On the other hand, the filtrate was evaporated, and the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane ($3: 1$ v / v) to give $\mathbf{6 a}(82 \mathrm{mg}, 17 \%)$ and $\mathbf{7 a}(21 \mathrm{mg}, 3 \%)$.

The same reaction was conducted by employing benzene- n hexane as solvent system: A solution of $\mathbf{3 a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathbf{4 a}$ ($220 \mathrm{mg}, 1 \mathrm{mmol}$) in a 3:2 mixture (10 mL) benzene and n-hexane was refluxed for 24 hours, and cooled to room temperature. The precipitate was isolated by filtration, washed with n-hexane, and dried under reduced pressure. Compound $\mathbf{5 a}$ was obtained in a 77% yield (745 mg) as colorless solid. On the other hand, the filtrate was removed under reduced pressure and the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane $=3: 1$ $(\mathrm{v} / \mathrm{v})$ to give $\mathbf{6 a}(29 \mathrm{mg}, 6 \%)$ and $7 \mathbf{a}(7 \mathrm{mg}, 1 \%)$.

2) Method B.

A mixture of $\mathbf{3 a}(373 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathbf{4 a}(220 \mathrm{mg}, 1 \mathrm{mmol})$ in benzene was refluxed for 24 hours, and benzene was removed in vacuo. A $3: 2(\mathrm{v} / \mathrm{v})$ mixture $(10 \mathrm{~mL})$ of benzene and n-hexane was added to the residue, and refluxed for 2 hours. The solvent was removed under reduced pressure. These operations were repeated three times. Products were purified by the same method as those used for Method A. Compound $\mathbf{5 a}$ was obtained in a quantitative yield.

Macrocyclic Compound (5a).

Compound 5a has mp 223-225 (decomp); ir (potassium bromide): 2922, 2853, 1575, 1528, 1477, 1417, 1235, 1198, 1163, 1144, 1132, and $1106 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 266$ (log 84.74$)$ $\mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 1.27-1.55(\mathrm{~m}, 28 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=13.4$ Hz and 10.4 Hz$), 4.89(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}$ and 10.4 Hz$), 5.00(\mathrm{~s}$, $8 \mathrm{H}), 7.29(\mathrm{~s}, 8 \mathrm{H})$; FAB-mass m / z 893($\mathrm{M}+\mathrm{H}^{+}$).

Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, 59.15; H, 6.77; N, 12.54. Found: C, 58.98; H, 6.82; N, 12.65.
2-(4-Isothiocyanatomethyl-benzyl)-3-methyl-6-octyl-5H,7H-2a-thia(2a-S ${ }^{I V}$)-2,3,4a,7a-tetraazacyclopenta $[c d]$-indene$1,4(2 H, 3 H)$-dithione ($\mathbf{6 a}$).

Compound 6a has mp 215-217 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2926, 2854, 2189, 2097, 1579, 1531, 1484, 1466, 1427, 1406, 1342, 1236, 1189, 1173, 1130, 1101, and 720 $\mathrm{cm}^{-\mathrm{xl}}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 264(\log \varepsilon 4.50) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300$ MHz , deuteriochloroform): $\delta 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.28-$ $1.54(\mathrm{~m}, 14 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 3.51-3.62(\mathrm{~m}, 2 \mathrm{H})$, $4.69(\mathrm{~s}, 2 \mathrm{H})$, , 4.85-4.96 (m, 4H), 7.27-7.41 (m, 4H).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{~S}_{4}$: C, 55.45; H, 6.40; N, 13.47. Found: C, 55.29; H, 6.25; N, 13.32.
2,3-Bis-(4-isothiocyanatomethyl-benzyl)-6-octyl-5H,7H-2a-thia(2a-S ${ }^{I V}$)-2,3,4a,7a-tetraazacyclopenta $[c d]$-indene$1,4(2 H, 3 H)$-dithione (7a).

Compound 7a has mp 209-211 ${ }^{\circ}$ (decomp); ir (potassium bromide: 2925, 2854, 2090, 1579, 1532, 1474, 1420, 1406, 1334, $1236,1198,1163,752,724$, and $671 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 265 (loge 4.54) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): δ $0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.28-1.53(\mathrm{~m}, 14 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 3.52$ $(\mathrm{m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.87-4.95(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 4 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{~S}_{5}$: C, 57.62; H, 5.74; N, 12.60. Found: C, 57.86; H, 5.76; N, 12.38.

Conversion of $\mathbf{6 a}$ to $\mathbf{5 a}$.

Compound $\mathbf{6 a}$ ($166 \mathrm{mg}, 0.32 \mathrm{mmol}$) was refluxed in benzene $(25 \mathrm{~mL})$ for 24 hours. The precipitate was isolated by filtration, washed with n-hexane, and dried in vacuo. Compound 5a was obtained in 77% yield (110 mg). After the filtrate was removed
in vacuo, the crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane $=9: 1 \mathrm{v} / \mathrm{v}$) to give $\mathbf{4 a}(5 \mathrm{mg}$, 7%), $7 \mathbf{a}$ (trace), and 3a ($20 \mathrm{mg}, 17 \%$).

Conversion of $\mathbf{7 a}$ to $\mathbf{5 a}$.

Compound $7 \mathbf{a}$ ($77 \mathrm{mg}, 0.12 \mathrm{mmol}$) was refluxed in benzene (9 mL) for 24 hours. The precipitate was isolated by filtration, washed with n-hexane and dried in vacuo. Compound 5a was obtained in 91% yield (47 mg). After the filtrate was evaporated under reduced pressure, the residue was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: n$-hexane $=9: 1 \mathrm{v} / \mathrm{v}$) to give $\mathbf{4 a}$ ($23 \mathrm{mg}, 91 \%$).

The Reaction of $\mathbf{5 a}$ with Methylisothiocyanate.
A solution of $\mathbf{5 a}(134 \mathrm{mg}, 0.15 \mathrm{mmol})$ and methylisothicyanate ($78 \mathrm{mg}, 1.05 \mathrm{mmol}$) in benzene (15 mL) was refluxed for 24 hours. After the solvent was removed in vacuo,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane was added to the residue. The precipitate was isolated by filtration, washed with n-hexane and dried in vacuo. Compound 5a was recovered in 43% yield. On the other hand, the filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, benzene:ethyl acetate $=3: 1 \mathrm{v} / \mathrm{v}$) to give $\mathbf{3 a}(39 \mathrm{mg}, 35 \%)$, $\mathbf{6 a}(23 \mathrm{mg}, 15 \%)$, $\mathbf{7 a}$ ($7 \mathrm{mg}, 4 \%$), and $\mathbf{4 a}$ ($21 \mathrm{mg}, 32 \%$).

Preparation of $\mathbf{8}$.

Compound $\mathbf{8}$ was prepared by a similar method to that described previously [4] (Scheme 9). Treatment of 6,7-dihydro-2-methyl$5 H$-pyrimido $1,2-d][1,2,4]$ thiadiazole- $3(2 H)$-thione (15) $(0.187 \mathrm{~g}$, 1 mmol), which was prepared by thermolysis of 3,4-dimethyl-1,6-propano- $1 \mathrm{H}, 6 \mathrm{H}$-3a-thia($\left.\mathrm{S}^{\mathrm{IV}}\right)$-1,3,4,6-tetraaza-thiapentalene2,5 $(3 H, 4 H)$-dithione $(\mathbf{3}: \mathrm{R}=\mathrm{H})$, with p-methoxyphenylisoselenocyanate (10) [20] ($0.212 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ gave unsymmetrical tetraazathiapentalene derivative 16 in 95% yield $(0.38 \mathrm{~g})$. Thermolysis of $\mathbf{1 6}$ at $170^{\circ} \mathrm{C}$ under reduced pressure $(2 \mathrm{mmHg})$ gave selectively the thiadiazole derivative 9 in 91% yield (0.273 g). The reaction of $\mathbf{9}$ with 1.5 equivalents of $\mathbf{1 0}$ in refluxing CHCl_{3} for 3 hours gave $\mathbf{8}$ in a 59% yield $(0.295 \mathrm{~g})$.
2-Methyl-3-p-methoxyphenyl-6,7-dihydro-5H-2a-thia(2a-SIV)-2,3,4a,7a-tetraazacyclopent $[c d]$ inden-1 $(2 H)$-thione-4(3H)selenone (16).

Compound $\mathbf{1 6}$ has mp $124-126^{\circ}$ (decomp); ir (potassium bromide): $3454,2924,2832,2362,1606,1568,1522,1476,1372$, 1309, 1242, 1210, 1173, 1155, 1121, 1064, 1033, 942, 906, 828, 769,697 , and $516 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 254$ (loge 4.60), 290 (loge 4.44), 352 ($\log \varepsilon 3.79) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 2.44(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=5.8 \mathrm{~Hz}$), $4.66(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 7.01-7.31$ (AA?XX?type, $4 \mathrm{H}) ; \mathrm{ms} \mathrm{m} / \mathrm{z} 401\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}$ Se: C, 42.10; H, 4.04; $\mathrm{N}, 14.03$. Found: C, 42.00; H, 4.01; N, 13.89.
2-p-Methoxyphenyl-6,7-dihydro-5H-1,2,4-thiadiazolo[4,5-a]-pyrimidine-3(2 H)-selenone (9).

Compound $\mathbf{9}$ has $\mathrm{mp} 94-96^{\circ}$ (decomp); ir (potassium bromide): 3480, 1697, 1584, 16519, 1502, 1314, 1252, 1213, 1153, 1062, $1028,984,833,766$, and $744 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda$ max 265 (log ε 4.01) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.89$ (m, $2 \mathrm{H}), 3.61(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz})$, 6.90 ($\mathrm{s}, 4 \mathrm{H}$).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}$ OSSe: C, 44.17; H, 4.02; $\mathrm{N}, 12.88$ Found: C, 44.00; H, 4.01; N, 13.00.
2,3-Bis(p-methoxyphenyl)-6,7-dihydro-5H-2a-thia(2a-S ${ }^{\text {IV }}$)-2,3,4a,7a-tetraazacyclopent $[c d]$ inden-1,4($2 H, 3 H$)-diselenone ($\mathbf{8}$).

Compound 8 has mp 146-148 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2930, 2833, 2130, 1606, 1563, 1514, 1447, 1311, 1251, 1210, 1148, 1084, 1033, 979, 884, 834, 779, 731, 684, 563, 521, and $500 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 288$ (loge 4.38), 352 (loge 3.84) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 2.51$ (m, $2 \mathrm{H}), 4.69(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 6.90-7.30(\mathrm{~m}, 8 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}$ OSSe: C, $44.17 ; \mathrm{H}, 4.02 ; \mathrm{N}, 12.88$ Found: C, 44.00; H, 4.01; N, 13.00.

Thermolysis of 8 .
Compound $\mathbf{8}$ in solid state was stable to air, but decomposed slowly in benzene or CHCl_{3} solution (see Scheme 5). When the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ was measured immediately after dissolving in benzene- d_{6}, characteristic signals due to $\mathbf{8}$ appeared at 3.86 $\mathrm{ppm}(\mathrm{s}, 6 \mathrm{H})$ and at $4.69 \mathrm{ppm}(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz})$. However, after standing for 2 hours, new signals due to the methoxy group of 9 and $\mathbf{1 0}$ was observed at $3.81 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$ and $3.78 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$, respectively. These two new singlet signals were identified by comparison with the signals of authentic samples.

Macrocyclic Compound 5d.

Macrocyclic compound 5d was obtained in 17% yield (64 mg) from 3a and $\mathbf{4 b}$ by the same procedure as that described in Method A for 5a. In this reaction, compounds $\mathbf{6 d}$ and $7 \mathbf{d}$ were also obtained in 32% (146 mg) and 22% (115 mg) yields, respectively.

Compound 5d has mp 220-221 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2924, 2853, 1579, 1519, 1480, 1432, 1420, 1342, 1235, 1186, 1156, 1090, 1049, 914, and $720 \mathrm{~cm}^{-1}$; uv($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda$ max 266 (loge 4.75$) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.29-1.58(\mathrm{~m}, 28 \mathrm{H}), 2.28(\mathrm{br}, 2 \mathrm{H}), 2.59$ (br, 4H), 3.48-3.63 (m, 12H), and 4.89-5.00 (m, 4H); FAB-mass $\mathrm{m} / \mathrm{z} 769\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{~S}_{3}$: C, 53.09; H, 7.38; N, 14.57. Found: C, 53.23; H, 7.33; N, 14.46.

Compound 6d has mp 119.5-120.5 ${ }^{\circ}$; ir (potassium bromide): 2957, 2924, 2850, 2185, 2122, 2082, 1582, 1535, 1487, 1341, 1237, 1192, 1171, 1148, 1135, and $1103 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 264$ (loge 4.54) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.89$ (t, $3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.28-1.55(\mathrm{~m}, 14 \mathrm{H}), 2.12-2.36(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, $3.52-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}), 4.88-4.93(\mathrm{~m}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{~S}_{4}$: C, 49.85 ; H, 6.83; N, 15.30. Found: C, 50.15; H, 6.95; N, 15.15 .

Compound 7d has mp $104-106^{\circ}$; ir (potassium bromide): 2923, 2853, 2189, 2129, 2078, 1584, 1532, 1480, 1420, 1238, 1235, $1184,1166,1146,1135$, and $1080 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 265$ ($\log \varepsilon 4.54$) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.89$ (t, $3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.28-1.55(\mathrm{~m}, 14 \mathrm{H}), 2.17-2.35(\mathrm{~m}, 5 \mathrm{H}), 3.53(\mathrm{dd}$, $2 \mathrm{H}), 3.66(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}), 3.92(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}), 6.41(\mathrm{dd}, 2 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{~S}_{5}$: C, 48.67; H, 6.31; N, 15.48 Found: C, 48.93; H, 6.30; N, 15.18.

Macrocyclic Compound 5b.

Macrocyclic compound 5b was obtained in 46% yield (115 mg) from $\mathbf{3 b}$ and $\mathbf{4 a}$ by the same procedure as that described in Method A for 5a. In this reaction, compounds $\mathbf{6 b}$ and $\mathbf{7 b}$ were
obtained in $17 \%(48 \mathrm{mg})$ and $4 \%(14 \mathrm{mg})$ yields, respectively.
Compound 5b has mp 233-235 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2919, 2851, $1575,1531,1478,1416,1236,1198,1162$, 1143,1111 , and $753 \mathrm{~cm}^{-1} ; \operatorname{uv}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 266(\log \varepsilon 4.76) \mathrm{nm}$; ${ }^{1} \mathrm{H} \operatorname{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 1.27-1.51(\mathrm{~m}, 44 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, 4 \mathrm{H}), 4.90$ (dd, 4H), $5.00(\mathrm{~s}, 8 \mathrm{H}), 7.29(\mathrm{~s}, 8 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, 59.15; H, 6.77; N, 12.54. Found: C, 59.32; H, 6.52; N, 12.55 .

Compound 6b has mp $224-225.5^{\circ}$ (decomp); ir (potassium bromide): $2919,2849,2150,2076,1583,1531,1482,1470$, $1416,1400,1332,1239,1204,1189,1149,1107$, and $718 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 264(\log \varepsilon 4.54) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.27-1.54(\mathrm{~m}, 22 \mathrm{H})$, $2.23(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.85-$ $4.96(\mathrm{~m}, 4 \mathrm{H})$, and 7.27-7.42 (m, 4H).

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{~S}_{4}$: C, 58.39; H, 7.18; N, 12.16. Found: C, 58.69; H, 7.11; N, 11.87.

Compound 7b has mp $204-207^{\circ}$ (decomp); ir (potassium bromide): 2922, 2852, 2174, 2088, 1582, 1531, 1469, 1421, $1337,1236,1165,1144,753$, and $668 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 265 (loge 4.53) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.26-1.53(\mathrm{~m}, 22 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 3.52$ $(\mathrm{dd}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}), 4.88(\mathrm{~s}, 4 \mathrm{H}), 4.93(\mathrm{dd}, 2 \mathrm{H})$, and 7.267.36 (m, 8H).

Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{~S}_{6}: \mathrm{C}, 59.79 ; \mathrm{H}, 6.41 ; \mathrm{N}, 11.62$. Found: C, 59.78; H, 6.44; N, 11.32.
Macrocyclic Compound 5c.
Macrocyclic compound 5c was obtained in 39% yield (114 mg) from $3 \mathbf{c}$ and $\mathbf{4 a}$ by the same procedure as that described in Method A for 5a. In this reaction, compounds $\mathbf{6 c}$ and $7 \mathbf{c}$ were obtained in $16 \%(52 \mathrm{mg})$ and $3 \%(13 \mathrm{mg})$ yields, respectively; $\mathrm{mp} 218-$ 219° (decomp); ir (potassium bromide): 2921, 2851, 1576, 1532, $1478,1417,1236,1198,1165,1144$, and $753 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda \max 266$ (loge 4.66) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.26-1.52(\mathrm{~m}, 68 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 3.47$ $(\mathrm{dd}, 4 \mathrm{H}), 4.90(\mathrm{dd}, 4 \mathrm{H}), 5.00(\mathrm{~s}, 8 \mathrm{H})$, and $7.29(\mathrm{~s}, 8 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{100} \mathrm{~N}_{8} \mathrm{~S}_{6}: \mathrm{C}, 65.48 ; \mathrm{H}, 8.59 ; \mathrm{N}, 9.55$. Found: C, 65.22; H, 8.88; N, 9.25.

Compound 6c has mp 123-124 ${ }^{\circ}$; ir (potassium bromide): 2918, 2849, 2151, 2077, 1583, 1531, 1482, 1471, 1416, 1400, 1342, $1234,1203,1189,1149,1111$, and $718 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 264 (loge 4.54) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.26-1.54(\mathrm{~m}, 34 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}$, $3 \mathrm{H}), 3.51-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.85-4.96(\mathrm{~m}, 4 \mathrm{H})$, and 7.27-7.41 (m, 4H).

Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{~S}_{4}: \mathrm{C}, 61.87 ; \mathrm{H}, 8.09 ; \mathrm{N}, 10.61$. Found: C, 62.01; H, 8.01; N, 10.40.

Compound 7c has mp 205-210 ${ }^{\circ}$ (decomp) ; ir (potassium bromide): $2928,2854,2175,2100,1586,1524,1472,1421,1334$, 1236, 1169, 1144, 755, 721, and $669 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 266 (loge 4.55) nm ; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): δ $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.27-1.53(\mathrm{~m}, 34 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}$, $2 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}), 4.87-4.96(\mathrm{~m}, 6 \mathrm{H})$, and $7.26-7.35(\mathrm{~m}, 8 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{~S}_{5}: \mathrm{C}, 62.49 ; \mathrm{H}, 7.24 ; \mathrm{N}, 10.41$. Found: C, 62.61; H, 7.40; N, 10.24.

Macrocyclic Compound 5e.

Macrocyclic compound 5e was obtained in 43% yield (51 mg) from $\mathbf{3 d}$ and $\mathbf{4 c}$ by the same procedure as that described in

Method B for 5a. Compound 5e was obtained as a yellow solid, $\mathrm{mp} 195-197^{\circ}$; ir (potassium bromide): 3065, 3030, 2934, 2856, $1578,1527,1475,1458,1403,1364,1320,1273,1235,1188$, 1111, 932, 823, 756, and $696 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 401(\log \varepsilon$ 4.72), 380 (loge 4.72), 360 (loge 4.56), 258 (loge 5.60) nm; ${ }^{1} \mathrm{H}$ nmr (300 MHz , deuteriochloroform): $\delta 1.27$ (m, 4H), 1.54-1.72 $(\mathrm{m}, 8 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 4 \mathrm{H}+4 \mathrm{H}), 4.51(\mathrm{~s}, 4 \mathrm{H}), 4.73(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=14.5 \mathrm{~Hz}), 4.99(\mathrm{~d}, 2 \mathrm{H}, 18.1 \mathrm{~Hz}), 5.96(\mathrm{~d}, 8 \mathrm{H}), 7.29(\mathrm{~m}$, $10 \mathrm{H}), 7.64(\mathrm{~m}, 8 \mathrm{H}), 8.45(\mathrm{~m}, 8 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{66} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, 66.41; H, 5.40; $\mathrm{N}, 9.39$. Found: C, 66.37; H, 5.53; N, 9.53.

Macrocyclic Compound 5 f.

Macrocyclic compound $\mathbf{5 f}$ was obtained in 30% yield (56 mg) from $\mathbf{3 d}$ and $\mathbf{4 d}$ by the same procedure as that described in Method B for 5a. Compound 5f has mp 195-197 (decomp); ir (potassium bromide): 2913, 2853, 1577, 1526, 1473, 1400, 1355, $1307,1283,1234,1157,1094,996,952,737,698$, and $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.52(\mathrm{~m}, 12 \mathrm{H}), 2.22$ $(\mathrm{m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 4 \mathrm{H}+4 \mathrm{H}), 4.01(\mathrm{~m}, 8 \mathrm{H}), 4.19(\mathrm{~m}, 8 \mathrm{H}), 4.50(\mathrm{~s}$, $4 \mathrm{H}), 4.79(\mathrm{br}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 18 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{~N}_{10} \mathrm{~S}_{6}$: C, 54.39; H, 6.30; N, 15.10. Found: C, 54.41; H, 6.42; N, 14.95.

Macrocyclic Compound 5g.
Macrocyclic compound $\mathbf{5 g}$ was obtained in 90% yield (197 mg) from $3 \mathbf{d}$ and $\mathbf{4 a}$ by the same procedure as that described in Method B for 5a. Compound $\mathbf{5 g}$ has $\mathrm{mp} 215-216^{\circ}$ (decomp); ir (potassium bromide): 2916, 2857, 1572, 1524, 1474, 1419, 1235, $1163,1140,814,751$, and $683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.27(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.72(\mathrm{~m}, 8 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H})$, $3.47(\mathrm{~m}, 4 \mathrm{H}+4 \mathrm{H}), 4.49(\mathrm{~s}, 4 \mathrm{H}), 4.99(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 5.14(\mathrm{~s}$, 8H), $7.29(\mathrm{~m}, 18 \mathrm{H})$; FAB-mass m/z 993(M+H+).

Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, $60.45 ; \mathrm{H}, 5.68 ; \mathrm{N}, 11.28$. Found: C, 60.75; H, 5.70; N, 10.98 .

Macrocyclic Compound 5h.

Macrocyclic compound $\mathbf{5 h}$ was obtained in a 67% yield (133 mg) from $\mathbf{3 d}$ and 4 e by the same procedure as that described in Method B for 5a. Compound $\mathbf{5 h}$ has mp 228-230 (decomp); ir (potassium bromide): 2929, 2854, 1576, 1515, 1457, 1340, 1231, $1184,1162,1129,809,776,745,697$, and $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300$ MHz , deuteriochloroform): $\delta 1.25(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 8 \mathrm{H}), 2.22$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 4 \mathrm{H}+4 \mathrm{H}), 4.50(\mathrm{~s}, 4 \mathrm{H}), 4.96(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz})$, $5.29(\mathrm{~s}, 8 \mathrm{H}), 7.34(\mathrm{~m}, 18 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, $60.45 ; \mathrm{H}, 5.68 ; \mathrm{N}, 11.28$. Found: C, 60.71; H, 5.77; N, 11.31.
Macrocyclic Compound 5i.
Macrocyclic compound $\mathbf{5 i}$ was obtained in 13% yield (5 mg) from $3 f$ and $4 \mathbf{a}$ by the same procedure to that described by Method B for 5a. Compound $\mathbf{5 i}$ was obtained as a Yellow solid, mp 253-255 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2909, 2856, $1685,1654,1637,1577,1542,1523,1458,1420,1343,1154$, 1117, 901,736 , and $675 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 389(\log \varepsilon$ 4.35), 368 (loge 4.56), 358 (loge 4.25), 257 (loge 5.52) nm; ${ }^{1} \mathrm{H}$ nmr (300 MHz , deuteriochloroform): $\delta 2.10(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~m}$, $4 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{~s}, 8 \mathrm{H}), 7.19(\mathrm{~m}, 8 \mathrm{H}), 7.62$ ($\mathrm{m}, 10 \mathrm{H}$), 8.01 (br, 8 H).

Anal. Calcd. for $\mathrm{C}_{58} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{~S}_{6}$: C, $66.38 ; \mathrm{H}, 4.61 ; \mathrm{N}, 10.68$. Found: C, 66.21; H, 4.51; N, 10.89.

Macrocyclic Compound 11a.
A mixture of 5 a ($179 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(152 \mathrm{mg}$, 4.0 mmol) in DMSO (20 mL) was stirred at room tempareture for 24 hours, quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:ethylacetate $=19: 1)$ to give 11a ($111 \mathrm{mg}, 66 \%$) as white solid, $\mathrm{mp} 210-211^{\circ}$ (decomp); ir (potassium bromide): 3216, 3049, 2924, 2854, 1560, 1537, 1488, 1418, 1382, 1337, 1308, 1259, 1171, 1140, 1094, 961, 933, 901, 878, 827, and $754 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 257 ($\log \varepsilon 4.70$) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}\right.$, acetone- d_{6}): $\delta 0.86$ (t, $6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$), 1.22-1.28 (m, 28H), $1.73(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.81(\mathrm{br}$, 4 H), 4.26-4.65 (br, 4H), 4.93 (br, $4 \mathrm{H}+8 \mathrm{H}$), 7.26 (s, 8 H), 8.64 (br, $4 \mathrm{H})$; FAB-mass m/z $838\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{~S}_{4}$: C, $63.11 ; \mathrm{H}, 8.19$; $\mathrm{N}, 13.38$. Found: C, 63.25; H, 8.19; N, 13.15.

Macrocyclic Compound 11b.

Macrocyclic compound 11b was obtained in 46% yield (44 mg) from 5b by the same procedure as that described for 11a. Compound 11b has mp 134-135 (decomp); ir (potassium bromide): $3210,3046,2924,2853,1561,1535,1488,1466,1407$, 1381, 1336, 1282, 1240, 1172, and $1092 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max$ 258 (loge 4.66) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right): \delta 0.88(\mathrm{t}, 6 \mathrm{H}$, $\mathrm{J}=6.4 \mathrm{~Hz}), 1.22-1.27(\mathrm{~m}, 44 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.82(\mathrm{br}, 4 \mathrm{H})$, 4.26-4.62 (br, 4H), 4.93 (br, 4H+8H), $7.26(\mathrm{~s}, 8 \mathrm{H}), 8.64(\mathrm{br}, 4 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{~N}_{8} \mathrm{~S}_{4}$: C, 65.77; H, 11.80; N, 8.92. Found: C, 65.48; H, 12.08; N, 9.16.

Macrocyclic Compound 11e.

Macrocyclic compound 11e was obtained in 53% yield (9 mg) as yellow solid from 5e by the same procedure as that described for 11a. Compound 11e has mp 188-190 ${ }^{\circ}$ (decomp); ir (potassium bromide): 2925, 2857, 1654, 1542, 1458, 1284, and $695 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 255(\log \varepsilon 4.65) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, acetone$\mathrm{d}_{6}$): $\delta 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{br}, 4 \mathrm{H}), 1.60(\mathrm{br}, 4 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H})$, $3.45(\mathrm{~m}, 8 \mathrm{H}), 4.48(\mathrm{~m}, 8 \mathrm{H}), 5.69(\mathrm{~m}, 4 \mathrm{H}+8 \mathrm{H}), 7.35(\mathrm{br}, 10 \mathrm{H}), 7.51$ (br, 4H), $7.93(\mathrm{~m}, 8 \mathrm{H}), 8.30(\mathrm{~m}, 8 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, $69.68 ; \mathrm{H}, 6.38 ; \mathrm{N}, 9.85$. Found: C, 69.39; H, 6.68; N, 10.11.

Macrocyclic Compound 11f.

Macrocyclic compound $\mathbf{1 1 f}$ was obtained in 35% yield (6 mg) from $\mathbf{5 f}$ by the same procedure as that described for 11a. Compound 11f has mp 168-170 (decomp); ir (potassium bromide): $2935,2857,1654,1560,1542,1262,1117$, and $803 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 257(\log \varepsilon 4.70) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, ace-tone- d_{6}): $\delta 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{br}, 4 \mathrm{H}), 1.59(\mathrm{br}, 4 \mathrm{H}), 2.25(\mathrm{~m}$, 2 H), $2.58(\mathrm{br}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 8 \mathrm{H}), 3.62(\mathrm{~m}, 8 \mathrm{H}), 4.20(\mathrm{~m}, 16 \mathrm{H})$, $4.48(\mathrm{~s}, 4 \mathrm{H}), 4.74(\mathrm{br}, 4 \mathrm{H}), 5.33(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 10 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, $57.90 ; \mathrm{H}, 6.85 ; \mathrm{N}, 16.07$. Found: C, 58.15; H, 6.47; N, 15.98.

Macrocyclic Compound 11g.

Macrocyclic compound $\mathbf{1 1 g}$ was obtained in 37% yield (35 mg) from 5 g by the same procedure as that described for 11a. Compound 11g has mp 223-225 (decomp); ir (potassium bromide): 3056, 2926, 2857, 1637, 1542, 1284, 1102, 970, 740, and $699 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 328$ (log $\varepsilon 5.62$), 275 (log $\varepsilon .08$) $\mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 1.25$ (m, 4H),
$1.54-1.72(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 8 \mathrm{H}), 4.43(\mathrm{~s}, 4 \mathrm{H}), 4.99$ $(\mathrm{m}, 8 \mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~m}, 18 \mathrm{H}) ;$ FAB-mass m/z 937 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, $64.07 ; \mathrm{H}, 6.88 ; \mathrm{N}, 11.95$. Found: C, 63.86; H, 7.03; N, 12.00.
Macrocyclic Compound 11h.
Macrocyclic compound $\mathbf{1 1 h}$ was obtained in 64% yield (31 mg) from 5 h by the same procedure as that described for 11a. Compound 11h has mp 214-215 ${ }^{\circ}$ (decomp); ir (potassium bromide): $3230,3039,2924,2856,1527,1490,1457,1375,1324$, 1091, 873,741 , and $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, dimethylsulfoxide $\left.-\mathrm{d}_{6}\right): \delta 1.21(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 3.40$ $(\mathrm{m}, 8 \mathrm{H}), 4.42(\mathrm{~s}, 4 \mathrm{H}), 4.73(\mathrm{~m}, 8 \mathrm{H}), 5.09(\mathrm{~s}, 8 \mathrm{H}), 7.29(\mathrm{~m}, 18 \mathrm{H})$, 8.53 (br, 4H).

Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, $64.07 ; \mathrm{H}, 6.88 ; \mathrm{N}, 11.95$. Found: C, 64.26; H, 6.59; N, 11.68.
Alkaline Hydrolysis of 3a.
An aqueous KOH solution ($\mathrm{KOH} 0.41 \mathrm{~g} / \mathrm{H}_{2} \mathrm{O} 5 \mathrm{~mL}$) was added to an ethanol solution $(45 \mathrm{~mL})$ of $\mathbf{3 a}(149 \mathrm{mg}, 0.40 \mathrm{mmol})$. The mixture was stirred at room temperature for 40 minutes, and then neutralized with diluted HCl solution. The reaction mixture was concentrated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified by column chromatography (silica gel, toluene : ethylacetate $=4: 1)$ to give $13(37 \mathrm{mg}, 28 \%)$ and $12(53 \mathrm{mg}, 37 \%)$.
1-Methyl-3-\{2-[(3-methyl-thioureido)-methyl]-decyl\}thiourea(12).

Compound $\mathbf{1 2}$ was obtained as an oil; ir (potassium bromide): 3252, 2926, 2854, 1650, 1538, 1469, 1392, 1216, 1167, 1040, 741, 713 , and $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (300 MHz , deuteriochloroform): $\delta 0.88$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.27-1.41(\mathrm{~m}, 14 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{J}=4.3 \mathrm{~Hz}), 3.57-3.66(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.79(\mathrm{~m}, 2 \mathrm{H}), 10.65(\mathrm{br}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, 54.17 ; H, 9.25 ; N, 16.85. Found: C, 53.98; H, 9.34; N, 17.02.

5-Octyl-2-oxo-dihydro-pyrimidine-1, 3-dicarbothioic Acid bismethylamide (13).

Compound $\mathbf{1 3}$ was obtained as an oil; ir (potassium bromide): 3263, 3071, 2923, 2857, 1556, 1462, 1347, 1291, 1211, 1056, and $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 1.27-1.39(\mathrm{~m}, 14 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz})$, 3.36-3.45 (m, 2H), $3.84(\mathrm{br}, 2 \mathrm{H}), 6.40(\mathrm{br}, 2 \mathrm{H}), 6.91$ (br, 2H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, $53.59 ; \mathrm{H}, 8.43$; $\mathrm{N}, 15.62$. Found: C, 53.29; H, 8.43; N, 15.32.

Alkaline Hydrolysis of 13.

An aqueous KOH solution ($\mathrm{KOH} 0.41 \mathrm{~g} / \mathrm{H}_{2} \mathrm{O} 5 \mathrm{~mL}$) was added to an ethanol solution (45 mL) of $\mathbf{1 3}(53 \mathrm{mg}, 0.15 \mathrm{mmol})$. The reaction mixture was refluxed for 5 minutes, cooled to room temperature, and then neutralized with diluted HCl solution. The mixture was concentrated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography (silica gel, toluene : ethylacetate $=1: 3$) to give $17(34 \mathrm{mg}, 69 \%)$.

Macrocyclic Compound 14a.

An aqueous KOH solution ($\mathrm{KOH} 2.0 \mathrm{~g} / \mathrm{H}_{2} \mathrm{O} 25 \mathrm{~mL}$) was added to an ethanol solution (60 mL) of $\mathbf{5 a}(125 \mathrm{mg}, 0.14 \mathrm{mmol})$.

The reaction mixture was refluxed for 4 hours, cooled to room tempareture, and then neutralized with diluted HCl solution. The mixture was concentrated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:ethylacetate $=3: 1$) to give $\mathbf{1 4 a}(50 \mathrm{mg}$, 44%) as a colorless solid, $\mathrm{mp} 199-200^{\circ}$ (decomp); ir (potassium bromide): 3299, 3057, 2923, 2852, 1557, 1467, 1412, 1383, 1337, 1291, 1223, 970, 687, and $601 \mathrm{~cm}^{-1}$; uv (methanol) $\lambda \max$ 244 ($\log \varepsilon 4.77$) nm; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}\right.$, methanol- d_{4}): $\delta 0.89$ (t, $6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.25-1.30(\mathrm{~m}, 28 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 4 \mathrm{H})$, $4.59(\mathrm{~m}, 8 \mathrm{H}), 7.24(\mathrm{~s}, 8 \mathrm{H}),\{4 \mathrm{H}$ signal was overlapped with methanol's one.\}; FAB-mass m/z $814\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{~S}_{4}$: C, 62.02; H, 8.43; N, 13.78. Found: C, 61.75; H, 8.52; N, 13.59.

Macrocyclic Compound 14e.

Macrocyclic compound $\mathbf{1 4 e}$ was obtained in 44% yield (50 mg) from 5e by the same procedure as that described for $\mathbf{1 4 a}$. Compound 14e was obtained as a yellow solid; mp 180$182^{\circ}$ (decomp); ir (potassium bromide): 2926, 2849, 1658, 1560, $1542,1508,1458,1282,1117,1002,745$, and $701 \mathrm{~cm}^{-1}$; uv $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max 369(\log \varepsilon 3.78), 252(\log \varepsilon 5.33) \mathrm{nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300$ MHz , acetone $\left.-\mathrm{d}_{6}\right): \delta 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H})$, $2.25(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 8 \mathrm{H}), 4.38(\mathrm{~s}, 4 \mathrm{H}), 4.48(\mathrm{~m}, 12 \mathrm{H}), 7.33(\mathrm{~m}$, 10 H), 7.65 (br, 2H), 7.87 (br, 2H), $7.94(\mathrm{~m}, 8 \mathrm{H}), 8.28(\mathrm{~m}, 8 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{64} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}: \mathrm{C}, 69.03 ; \mathrm{H}, 6.52 ; \mathrm{N}, 10.06$. Found: C, 68.88; H, 6.35; N, 9.89.

Macrocyclic Compound 14f.

Macrocyclic compound $\mathbf{1 4 f}$ was obtained in 83% yield (14 mg) from $\mathbf{5 f}$ by the same procedure as that described for $\mathbf{1 4 a}$. Compound $\mathbf{1 4 f}$ was obtained as a yellow solid; mp 159$161^{\circ}$ (decomp); ir (potassium bromide): 3238, 2929, 2849, 1685, $1654,1560,1457,1369,1273,1205,1117,741,698$, and 658 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right): \delta 1.29(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~m}$, $4 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 2.96$ (br, 4H), 3.33 (m, 8H), 3.48 $(\mathrm{m}, 8 \mathrm{H}), 3.75(\mathrm{~m}, 16 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H}), 5.60(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{br}, 2 \mathrm{H})$, 7.23 (br, 2H), $7.35(\mathrm{~m}, 10 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, 57.89; H, 6.85; $\mathrm{N}, 16.07$. Found: C, 57.59; H, 6.98; N, 15.79.

Macrocyclic Compound 14g.

Macrocyclic compound $\mathbf{1 4 g}$ was obtained in 52% yield (38 mg) from 5 g by the same procedure as that described for $\mathbf{1 4 a}$. Compound $\mathbf{1 4 g}$ has $\mathrm{mp} 216-217^{\circ}$ (decomp); ir (potassium bromide): $3258,3033,2924,2849,1560,1283,1100$, and $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.22(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~m}, 8 \mathrm{H})$, 1.97 (m, 2H), $3.36(\mathrm{~m}, 8 \mathrm{H}), 4.41(\mathrm{~s}, 4 \mathrm{H}), 4.89(\mathrm{~m}, 8 \mathrm{H}), 5.14(\mathrm{~s}, 8 \mathrm{H})$, 7.19 (br, 4H), $7.24(\mathrm{~m}, 10 \mathrm{H})$; FAB-mass $\mathrm{m} / \mathrm{z} 913\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, 63.12; H, 7.06; $\mathrm{N}, 12.27$. Found: C, 62.88; H, 7.10; N, 12.42.

Macrocyclic Compound 14h.

Macrocyclic compound $\mathbf{1 4 h}$ was obtained in 26% yield (12 mg) from 5 h by the same procedure as that described for $\mathbf{1 4 a}$. Compound 14h has mp 211-213 ${ }^{\circ}$ (decomp); ir (potassium bromide): 3362, 3299, 3057, 2923, 2852, 1557, 1467, 1412, 1383, 1337, 1291, 1223, 970, 687, and $601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$, deuteriochloroform): $\delta 1.23(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.84(\mathrm{~m}$, $2 \mathrm{H}), 2.74(\mathrm{t}, 4 \mathrm{H}), 3.15(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=12.4 \mathrm{~Hz}), 3.41(\mathrm{t}, 4 \mathrm{H}), 4.41(\mathrm{~s}$,

4H), 4.59 (br, 8H), 7.15-7.37 (m, 18H), 7.46 (br, 4H), 7.83 (br, 4 H); FAB-mass $\mathrm{m} / \mathrm{z} 913\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{4}$: C, 63.12; H, 7.06; $\mathrm{N}, 12.27$. Found: C, 62.88; H, 7.10; N, 12.42.

Acknowledgments.
This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, to which the authors wish to express their grateful acknowledgments.

REFERENCES AND NOTES

[1a] F. Arndt, P. Nachtwey, J. Pusch, Chem. Ber., 58, 1633 (1925); [b] S. Bezzi, M. Mammi, C. Carbuglio, Nature (London), 182, 247 (1958); [c] G. Pfister-Guillouzo, Bull. Soc. Chim. Fr., 1316 (1958).
[2a] E. Klingsberg, J. Org. Chem., 33, 2915 (1968); [b] J.-L. Derocque, M. Perrier and J. Vialle, Bull. Soc. Chim. Fr., 2062 (1968); [c] D. H. Reid and J. D. Symon, J. Chem. Soc., Chem. Commun. 1314 (1969); [d] N. Lozac'h, Adv. Heterocycl. Chem., 13, 161 (1971); [e] D. H. Reid, J. Chem. Soc., 3187 (1971); [f] D. H. Reid and R. G. Webster, J. Chem. Soc., 1283 (1972); [g] R. J. S. Beer and A. Waylor, Tetrahedron Lett., 2989 (1973); [h] A. S. Ingram, D. H. Reid and J. D. Symon, J. Chem. Soc., Perkin Trans. 1, 242 (1974); [i] R. Gleiter, and R. Gygax, Top Curr. Chem., 86, 139 (1976); [j] J. Goerdeler, H. Hohage, and I. Zeid, Chem. Ber., 109, 3108 (1976); [k] R. Gleiter and J. Spanget-Larsen, Top. Curr. Chem., 86, 139 (1979); [1] Y. Yamamoto and K. Akiba, Heterocycles, 13, 297 (1979); [m] M. Yokoyama, T. Shiraishi, H. Hatanaka and K. Ogata, J. Chem. Soc., Chem. Commun., 1704 (1985); [n] J. P. Michael, D. H. Reid, B. G. Rose and R. A. Speirs, J. Chem. Soc., Chem. Commun., 1494 (1988).
[3a] J. I. Musher, Angew. Chem., Int. Ed. Engl., 8, 54 (1969); [b] F. Iwasaki and K. Akiba, Bull. Chem. Soc. Jpn., 57, 2581 (1984); [c] K. Akiba, K. Kashiwagi, Y. Ohyama, Y. Yamamoto and K. Ohkata, J. Am. Chem. Soc., 107, 2721 (1985); [d] R. A. Hayes, and J. C. Martin, In Organic Sulfur Chemistry: Theoretical and Experimental Advances; F. Bemardi, I. G. Csizmadia and A. Mangini, Eds.; Elsevier Scientific Publishing : Amsterdam, pp 408 (1985); [e] A. Kucsman, and I. Kapovits, In Organic Sulfur Chemistry; Theoretical and Experimental Advances; F. Bemardi, I. G. Csizmadia, and A. Mangini, Eds.; Elsevier scientific Publishing : Amsterdam, pp 191 (1985); [f] K. Akiba, M. Ohsugi, H. Iwasaki, and K. Ohkata, J. Am. Chem. Soc., 110, 5576 (1988).
[4] N. Matsumura, M. Tomura, O. Mori, Y. Tsuchiya, S. Yoneda and K. Toriumi, Bull. Chem. Soc. Jpn., 61, 2419 (1988).
[5a] N. Matsumura, M. Tomura, M. Yoneda and K. Toriumi, Chem. Lett., 1047 (1986); [b] N. Matsumura, M. Tomura, O. Mori, Y. Tsuchiya and S. Yoneda, Bull. Chem. Soc. Jpn., 61, 2419 (1988); [c] N. Matsumura, M. Tomura, O. Mori, Y. Takamura and S. Yoneda, Tetrahedron Lett., 30, 2259 (1989); [d] M. Tomura, M. Chikusa, K. Inazu, A. Ito, N. Matsumura and H. Inoue, Synthesis, 457 (1991) and references cited therein.
[6] N. Matsumura, M. Tomura, O. Mori, M. Ukawa and S. Yoneda, Heterocycles, 26, 3097 (1987).
[7a] N. Matsumura, O. Mori, M. Tomura and S. Yoneda, Chem. Lett., 2259 (1989); [b] M. Tomura, O. Mori, N. Matsumura, and H. Inoue, J. Heterocycl. Chem., 28, 221 (1991).
[8] N. Matsumura, R. Hirase and H. Inoue, Tetrahedron Lett., 35, 899 (1994) and references cited therein.
[9] F. G. Bordwell, D. J. Algrim and J. A. Harrelson Jr., J. Am. Chem. Soc., 110, 5904 (1988).
[10] For substituent effects on association constants of arylthioureas: C. S. Wilcox, D. Kim, L. H. Romano, A. L. Kuo and D. P. Curran, Tetrahedron, 51, 621 (1995).
[11] P. Buhlmann, S. Nishizawa, K. P. Xiao and Y. Umezawa, Tetrahedron, 53, 1647 (1997).
[12a] T. Shioya, S. Nishizawa and N. Teramae, J. Am. Chem. Soc.,

120, 11534 (1998); [b] Y. Tobe, S. Sasaki, M. Mizuno, K. Hirose and K. Naemura, J. Org. Chem., 63, 7481 (1998).
[13] Preliminaly communication: N. Matsumura, T. Konishi, H. Hayashi, M. Yasui, F. Iwasaki and K. Mizuno, Heterocycles, 53, 1239 (2000).
[14] X-ray Crystallography. Crystallographic data of 11a. $\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{~S}_{4}+2.14 \mathrm{CHCl}_{3}$, trigonal, space group R3(hexagonal setting), $\mathrm{a}=30.380(8), \mathrm{c}=16.704(5) \AA, \mathrm{V}=13351(5) \AA^{3}, \mathrm{Z}=9, \mathrm{~d}_{\text {calc }}=1.223 \mathrm{~g}$ cm^{-3}. A colorless crystal with dimensions of $0.2 \times 0.3 \times 0.2 \mathrm{~mm}$ was sealed in a glass capillary immersed in a minimum amount of solvent soon after picked up from the CHCl_{3} /hexane solution, because the crystals were immediately deteriorated in the air. The specimen was cooled at 253 K during the data collection to reduce the deterioration. The intensity data were collected on a MAC Sceience DIP-3000 diffractometer using the imaging plate as a detector with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Whole data were collected within about 12 hours. 11828 reflections measured, 6715 unique, 1760 with $|\mathrm{Fo}|>2.5 \sigma(\mathrm{~F}), \mathrm{R}=0.148, R \mathrm{w}_{2}=0.393$ (315 variables). The
terminal three atoms of alkyl chain and solvent molecules are disordered, so that R factors were not sufficiently reduced. The backbone structure, however, was obtained from the direct method followed by successive Fourier syntheses.
[15] Johnson C. K., ORTEPII, Report OLNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
[16] T. Shibanuma, M. Shiono, andT. Mukaiyama, Chem. Lett., 573 (1977).
[17] G. R. Newkome, D. K. Kohli and F. R. Fronczek, J. Am. Chem. Soc., 104, 994 (1982).
[18] H. Shirai, Y. Takahashi, H. Tsutsumi, A. Kurose, K. Hanabusa and N. Hozyo, Japan Kokai, 51645 (1987).
[19] Organic Synthesis, Coll. Vol. 3, 394.
[20] p-Methoxyphenyl isoselenocyanate was prepared by a similar method to that in literature [21].
[21] M. Segi and T. Nakajima, Yukigosei Kagaku Kyokaishi, 53, 678 (1995).

